Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 23

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Fuel debris criticality analysis technology using non-contact measurement method (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-043, 52 Pages, 2023/01

JAEA-Review-2022-043.pdf:3.48MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2021. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology (Tokyo Tech), National Institute of Advanced Industrial Science and Technology (AIST), and National Research Nuclear University (MEPhI) as the first year of four years research project. For the criticality characteristic measurement systems to be developed by the Japanese and Russian sides, …

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-037, 61 Pages, 2022/01

JAEA-Review-2021-037.pdf:4.24MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of critical safety technology in fuel debris retrieval" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of research was to improve the criticality safety analysis methods in the case of fuel debris removal with the collaboration with Russian university, which has a lot of experiences in the criticality analysis. This research has been performed as two fiscal years project in FY 2019 and FY 2020 by Tokyo Institute of Technology (Tokyo Tech) and Tokyo City University (TCU) as the Japanese side, and National Research Nuclear University MEPhI as the Russian side.

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-041, 30 Pages, 2020/12

JAEA-Review-2020-041.pdf:1.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of Critical Safety Technology in Fuel Debris Retrieval" conducted in FY2019.

Journal Articles

Japanese research activities for Fukushima-Daiichi decommissioning

Okamoto, Koji; Ogawa, Toru

Proceedings of 2016 EFCOG Nuclear & Facility Safety Workshop (Internet), 3 Pages, 2016/09

The decommissioning of the Fukushima-Daiichi Nuclear Power Plant has required and will continue to demand conducting many challenging activities, many of which do not have prior experience in the nuclear industry. International decommissioning knowledge and technology advances will be required to support the challenging work. The Collaborative Laboratories for Advanced Decommissioning Science (CLADS) was established by the Japan Atomic Energy Agency (JAEA) in April 2015. The main objectives of CLADS are the management, research and development for decommissioning at the Fukushima-Daiichi site. Not only is the coordination of research and development important to effective decommissioning, but also the management of research activities around the world. A status of the CLADS program will be provided. The CLADS central research office will be located at Tomioka Town, near the Fukushima site, in April 2017.

Journal Articles

Info session on human networking held in Japan-IAEA Joint Nuclear Energy Management School; Aiming to develop human network among nuclear young generation in the world

Nishiyama, Jun*; Ohgama, Kazuya; Sakamoto, Tatsujiro*; Watanabe, Rin*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 57(2), p.123 - 125, 2015/02

no abstracts in English

Journal Articles

Development of environment for remote participation in fusion research on JT-60

Oshima, Takayuki; Naito, Osamu; Hamamatsu, Kiyotaka; Iba, Katsuyuki; Sato, Minoru; Sakata, Shinya; Tsugita, Tomonori; Matsuda, Toshiaki; Iwasaki, Keita*; Karube, Yukihiro*; et al.

Fusion Engineering and Design, 71(1-4), p.239 - 244, 2004/06

 Times Cited Count:5 Percentile:35.25(Nuclear Science & Technology)

In the JT-60 tokamak at JAERI, environment for remote participation is planned to be developed by concentrating experts of nuclear fusion research of another research organizations and universities distributed all over the country. We are constructing a hierarchical remote research system, which consists of remote experiment, remote analysis, and remote diagnostic. In a remote collaboration, it is important to maintain the security of the system, as well as to share the information, atmosphere and presence between the participants. For the latter purpose, we developed a video conferencing system, and a video streaming system that can deliver the images of the JT-60 control room. Furthermore, a development of the remote analysis system called "VizAnalysis" has been started. And to assist the remote analysis, we developed a web based software system called "VizSquare". In the JT-60 tokamak at JAERI, security and authentication methods on a computer network and a new communication tool are developed, and probably they will be applied to the remote participation of ITER.

JAEA Reports

Proceedings of the International Symposium on Accelerator-driven Transmutation Systems and Asia ADS Network Initiative

Oigawa, Hiroyuki

JAERI-Conf 2003-012, 317 Pages, 2003/09

JAERI-Conf-2003-012.pdf:28.6MB

An International Symposium on "Accelerator-driven Transmutation Systems and Asia ADS Network Initiative" was held on March 24 and 25, 2003 to make participants acquainted with the current status and future plans for R&D of ADS in the world and to enhance the international collaboration in Asia. Current activities for R&D of ADS were presented from United States, Europe, Japan, Korea, and China. Activities in the fields of accelerator and nuclear physics were also presented. A panel discussion was organized with regard to the prospective international collaboration and multidisciplinary synergy effect, which are essential to manage various technological issues encountered in R&D stage of ADS. Through the discussion, common understanding was promoted concerning the importance of establishing international network.

JAEA Reports

IFMIF-KEP; International Fusion Materials Irradiation Facility key element technology phase report

IFMIF International Team

JAERI-Tech 2003-005, 559 Pages, 2003/03

JAERI-Tech-2003-005.pdf:48.89MB

The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m$$^{2}$$, 20 dpa/y in Fe, in a volume of 500 cm$$^{3}$$ and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration.

Journal Articles

Scientific visual analysis system required for large-scale numerical simulations

Suzuki, Yoshio; Kishimoto, Yasuaki; NEXT Group

Purazuma, Kaku Yugo Gakkai-Shi, 78(1), p.59 - 69, 2002/01

From the year 2000 to 2001, the computer system located on Naka Fusion Research Establishment, Japan Atomic Energy Research Institute has been replaced. Since the main computer is the scalar parallel computer, which is about 40 times superior to the previous one, the amount of data outputted from the numerical simulations becomes much larger. In this paper, which scientific visual analysis system is more useful to extract the physical phenomena from such a large amount of data is investigated and the performance of the established visual analysis system is estimated.

Journal Articles

Topics on delayed neutron data

Okajima, Shigeaki

Kaku Deta Nyusu (Internet), (59), p.16 - 23, 1998/02

no abstracts in English

Journal Articles

Development of human and robot collaborative navigation technology in nuclear power plants

Ishikawa, Nobuyuki; *; ; Suzuki, Katsuo

Proc. of AIR & IHAS '97, p.213 - 225, 1997/00

no abstracts in English

Journal Articles

Summary of benchmark experiments for simulation of fusion reactors using an annular blanket with a line deuterium-tritium source

Maekawa, Hiroshi; M.A.Abdou*; Oyama, Yukio; Konno, Chikara; Maekawa, Fujio; Ikeda, Yujiro; Kosako, Kazuaki*; Nakamura, Tomoo; M.Z.Youssef*; A.Kumar*; et al.

Fusion Technology, 28(2), p.296 - 304, 1995/09

no abstracts in English

Journal Articles

Design and techniques for fusion blanket neutronics experiments using an accelerator-based deuterium-tritium neutron source

Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; Maekawa, Fujio; Maekawa, Hiroshi; ; ; Nakamura, Tomoo; M.A.Abdou*; Bennett, E. F.*; et al.

Fusion Technology, 28(1), p.56 - 73, 1995/08

no abstracts in English

Journal Articles

Neutronics integral experiments of lithium-oxide fusion blanket with heterogeneous configurations using deuterium-tritium neutrons

Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; ; ; Kosako, Kazuaki*; Maekawa, Hiroshi; Nakakawa, Masayuki; Mori, Takamasa; Nakamura, Tomoo; et al.

Fusion Technology, 28(1), p.216 - 235, 1995/08

no abstracts in English

Journal Articles

Summary of benchmark experiments for simulation of fusion reactors using an annular blanket with a line D-T source

Maekawa, Hiroshi; Oyama, Yukio; M.A.Abdou*

Materials for Advanced Energy Systems & Fission and Fusion Engineering '94, 0, p.235 - 246, 1994/00

no abstracts in English

Journal Articles

JAERI/USDOE collaborative experiments on fusion blanket neutronics

Oyama, Yukio

NCC Nyusu, 0(18), p.17 - 23, 1994/00

no abstracts in English

JAEA Reports

Electron beam irradiation experiments of monoblock divertor mock-up

Sato, Kazuyoshi; Akiba, Masato; Araki, Masanori; ; ; I.Smid*; A.Cardella*; R.Duwe*; E.D.Pietro*

JAERI-M 93-058, 22 Pages, 1993/03

JAERI-M-93-058.pdf:1.23MB

no abstracts in English

JAEA Reports

Phase IIC experiments of the USDOE/JAERI collaborative program on fusion blanket neutronics; Experiments and analysis of heterogeneous fusion blankets, Volume II: Analysis

Nakakawa, Masayuki; Kosako, Kazuaki*; Mori, Takamasa; Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; Yamaguchi, Seiya*; Tsuda, Koichi*; Maekawa, Hiroshi; *; et al.

JAERI-M 92-183, 106 Pages, 1992/12

JAERI-M-92-183.pdf:2.6MB

no abstracts in English

JAEA Reports

Phase IIC experiments of the JAERI/USDOE collaborative program on fusion blanket neutronics; Experiments and analysis of the heterogeneous fusion blankets, Volume I: Experimental results

Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; Yamaguchi, Seiya*; Tsuda, Koichi*; Maekawa, Hiroshi; *; Kosako, Kazuaki*; Nakakawa, Masayuki; Mori, Takamasa; et al.

JAERI-M 92-182, 151 Pages, 1992/12

JAERI-M-92-182.pdf:4.31MB

no abstracts in English

23 (Records 1-20 displayed on this page)